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Unleashing the Power of Machine Learning in
Nanomedicine Formulation Development

Thomas L. Moore,* Cristiano Pesce, Antonietta Greco, Claudia Pisante, Greta Avancini,

Valentina Di Francesco, Yosi Shamay, and Paolo Decuzzi

Artificial intelligence (Al) is being integrated into nearly every aspect of modern
life, and machine learning (ML)-a subfield of Al-has the potential to accelerate
the development of nanomedicines. Here, a machine learning workflow is
presented to optimize the microfluidic-based formulation of nanomedicines.
A database of ~200 unique nanomedicine formulations with over 550

total measurements is curated by producing liposomes, lipid nanoparticles,
and poly(lactic-co-glycolic acid) nanoparticles, either empty or loaded with

the model therapeutic agent, curcumin. Nanoparticle production parameters
are systematically varied, and the resulting particles are characterized for their
diameter, polydispersity index, and encapsulation efficiency. These data are
used to train and validate 13 different ML models using open-source libraries,
with the task of returning the most accurate prediction of nanomedicine
attributes. The most accurate models, based on random forest regression,

are implemented to yield particles with user-specified attributes. Finally,

the proposed ML workflow, MicrofluidicML, is compared against generative
large language models—OpenAl ChatGPT, Google’s Gemini, and DeepSeek.
MicrofluidicML provides a workflow where the researcher has complete
governance and control of the input data with a relatively low computational
overhead, and represents a step toward implementing a computationally
lightweight ML framework to accelerate nanomedicine development.

1. Introduction

revolutionize medicine and laboratory sci-
ences. Machine learning (ML), a subset of
Al where computers are capable of adapt-
ing without explicit programming based on
algorithms and statistical models, is par-
ticularly suitable for nanoparticle produc-
tion and formulation development.[*-®! In-
deed, in preliminary examples, ML has
been used to engineer multifunctional pep-
tides to boost the melanin binding rates
in ocular delivery!”! optimize the uptake
of poly(lactic-co-glycolic acid)-polyethylene
glycol (PLGA-PEG) nanoparticles in breast
cancer cells,!® and predict the transfection
efficiency of lipid nanoparticles deploying
nucleic acids.”! However, building effective
and generalizable ML models relies on cu-
rating a substantial amount of high-quality
data.

In this context, there is an ever-growing
interest in utilizing microfluidics as a
scalable and reproducible approach to fab-
ricate nanomedicines.l'%!!] Independently
of the various microfluidic-based mix-
ing techniques available-hydrodynamic
flow focusing, mixing via a staggered
herringbone  micromixer,  bifurcating

Recent advances in artificial intelligence (AI) have sparked excite-
ment across many scientific disciplines due to their potential to

mixers, baffle mixers, T-junction mixing—the production of
nanoparticles relies on the precise control of a few crucial en-
gineering parameters (input features), such as the total flow rate
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(TER), the flow rate ratio (FRR) between aqueous and organic
phases, and reagents’ concentrations—previously documented
by the group of Yvonne Perrie using design-of-experiments
(DoE) and multivariate data analysis in the context of liposome
production.[t?]

However, at the outset of developing a new nanomedicine
formulation, identifying the optimal input features to achieve
a nanoparticle with the desired hydrodynamic diameter (d),
polydispersity index (PdI), and drug encapsulation efficiency
(EE) is still largely a game of expertise (prior know-how), lit-
erature research (replicating prior published works), and hit-
or-miss experimentation (systematically testing different val-
ues of the input features). That stated, the ability to produce
nanomedicines with specified physico-chemical properties re-
mains a priority, as these properties are understood to mediate
biological interactions.!'*7] There is no direct regulatory guid-
ance for specific attributes of nanoparticles for clinical use,!'31°]
however, it is clear that nanoparticles must be produced with con-
sistent properties to exert a consistent and predictable biological
effect.

Advanced statistical models or ML-developed models have sig-
nificant potential to streamline this process and generate new
revolutionary formulations based on high-quality data. Nonethe-
less, the implementation of these advanced techniques can be
challenging for the broader community that is unaccustomed to
such computational tools. Here, we aim to present a workflow
that can, in part, provide a roadmap toward the facile integration
of ML tools for the microfluidic development of nanomedicines.

2. Results and Discussion
2.1. The MicrofluidicML Workflow

The MicrofluidicML workflow, at its core, consists of a database
of nanomedicine formulations comprised of lipid nanoparticles
(LNP), liposomes, and PLGA nanoparticles. The experimental
data are aggregated by particle type, identifying a subset for lipid-
based nanoparticles, including LNP and liposomes, and a sub-
set for polymer-based (PLGA) nanoparticles. The rationale for
combining LNP and liposomes is based on the fact that they are
both made out of lipids, and their combination further tests the
generalizability of the program. Furthermore, PLGA nanoparti-
cles were trained as a separate class because, as a material, poly-
mers are fundamentally different from lipids. All nanoparticle
types were fabricated using a Precision NanoSystems Benchtop
NanoAssemblr instrument, equipped with a microfluidic micro-
mixer cartridge characterized by a “Y”-like channel with stag-
gered herringbone geometric features in the channel to facilitate
fluid mixing (Figure 1A).

Figure 1B details how the experimental data are employed to
build predictive ML models. Models were trained on subsets of
broad particle classes (lipid vs polymer based) rather than specific
particle types. First, the data were randomly divided into training
data and testing data, corresponding to 85% and 15% of all the
experimental data, respectively. The training data were employed
for training the model, and the testing data were used to vali-
date the final output of the model directly on ‘unseen’ data. Data
were split so that the mean and standard deviation of the target

Adv. Funct. Mater. 2025, e14387 e14387 (2 Of17)

www.afm-journal.de

attribute were approximately equal between training and testing
data (Figure S1, Supporting Information).

Then, out of a library of available models, several different ML
models were selected and their hyperparameters were tuned via
10-fold cross-validation combined with a random 10-point search
of model hyperparameters. From these results, the most perfor-
mant model was selected for further tuning, and this “optimally
fit” model is then evaluated against the testing data, correspond-
ing to 15% of the experimental data that were not seen by the ML
model during the training process.

2.2. Microfluidic-Based Production of Nanomedicines

Almost 200 unique formulations of nanoparticles, either empty
or loaded with an active pharmaceutical ingredient (API), were
realized using a continuous-flow microfluidic-based mixing ap-
paratus (Figure 1A). Specifically, during the production of the
nanomedicines, two liquid phases, one aqueous and one organic,
are pushed through microchannels with cross-sectional dimen-
sions in the sub-millimetric range. Based on the unique geom-
etry of the microchannels, the two phases are mixed, enabling
the self-assembly of nanoparticles. To produce lipid nanoparti-
cles (LNP), a mixture of lipids was dissolved in ethanol (the or-
ganic phase), which was then mixed with an aqueous buffer at
a lower pH to enable the protonation of ionizable lipids (and
generally their subsequent complexation of a nucleic acid pay-
load). Liposomes were similarly produced; however, the species
of lipids, their ratios, and the aqueous buffer differed. To produce
PLGA nanoparticles, the polymer was dissolved in an organic sol-
vent (i.e. acetonitrile) and then mixed with water. Hydrophobic-
hydrophobic polymer interactions then induce the self-assembly
of the nanoparticles. Incorporation of a hydrophobic drug in the
organic phase would enable its entrapment within the polymeric
matrix. The microfluidic-based apparatus offers a flexible and
highly controllable approach to produce several different types
of nanoparticles in a relatively short period of time.

In this work, nanoparticles were classified in three differ-
ent categories: empty lipid nanoparticles (LNP); liposomes, ei-
ther empty or entrapping the hydrophobic molecule curcumin
(CURC) within the lipid bilayer; and PLGA nanoparticles, ei-
ther empty or loaded with CURC. Among the mixing param-
eters, the aqueous: organic flow rate ratio (FRR) and the to-
tal flow rate (TFR) were systematically changed, while among
the composition parameters, the total molar concentration for
the lipids or polymers (materials) as well as the ratio between
the API and nanoparticle mass were systematically modified.
The actual values used for the four input features are listed in
Table 1, while Figure S2 (Supporting Information) shows the so-
called ‘experimental box’ in a 3D space, where each dot corre-
sponds to a unique particle formulation. For simplicity, only the
cases of empty LNP, liposomes, and PLGA nanoparticles are dis-
played.

Figure 2A provides a general schematic of the three parti-
cle types together with the percent content in lipids and poly-
mers. Note that while the total mass of lipids was systematically
changed for the LNP and liposomes, the relative ratios among the
different lipid components were fixed. Scatter plots in Figure 2B
show the effect of the mixing and composition features-TFR,
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Figure 1. Schematic of microfluidic-base nanoparticle synthesis and the machine learning workflow (MicrofluidicML). A) A “Y”-shaped microfluidic
channel with a staggered herringbone structure was employed for mixing organic (ethanol) and aqueous phases. Materials and flow parameters (input
features) included the total flow rate (TFF), aqueous: organic flow rate ratio (FRR), and concentration ratios for the reagents. B) Experimental data were
subset into relevant measurements based on particle class, and defined as either monodisperse (polydispersity index, Pdl < 0.250) or polydisperse
(Pdl > 0.250). These data were randomly split into training data (85%) and testing data (15%). Models were trained to predict particle hydrodynamic
diameter (dy), Pdl, and encapsulation efficiency (EE) of some APl on dynamically generated input features, based on the composition and microfluidic
parameters of the subset database. Model hyperparameters were optimized via a grid search over a range of values and further evaluated via stratified
k-fold cross-validation. Model accuracy was evaluated on “unseen” testing data. Optimized models were used to dynamically generate a table of the
best formulations to yield particles of a desired size, below a Pdl threshold, and with an optimal EE.

FRR, total molar concentration—on the hydrodynamic particle di-
ameter, d;. For example, LNP produced at a TFR of 2 ml/min,
a FRR equal to 3:1, and at a total lipid concentration of 20 mM
returned a hydrodynamic diameter of 85 + 8 nm with a Pdl =
0.201 + 0.056. By comparison, empty liposomes produced at a
TFR of 1 ml/min, a FRR of 3:1, and a total lipid concentration
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of 24 mM had a diameter of 103 + 2 nm with a PdI = 0.128 +
0.004, while PLGA particles produced with a TER of 3 ml/min, a
FRR of 3:1, and 0.2174 mM were 97 + 0.4 nm in diameter with
a PdI = 0.142 + 0.015. Note that a threshold of 0.250 was imple-
mented for the PdI, above which particles were deemed “poly-
disperse.” This was necessary as the training of the ML models
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Table 1. Input Features for each nanoparticle type. Almost 200 unique formulations of nanoparticles, either empty or loaded with an active pharmaceutical
ingredient (curcumin), were realized using a continuous-flow microfluidic-based mixing apparatus.

LNP Liposomes PLGA nanoparticles
TFR (ml/min) 2,4,8 1,4,8 3,6,13
FRR (aq:org) 1,3,5 3,6,9 3,45
Total reagent concentration (mM) 20, 40, 60 12, 24, 48 0.109, 0.217, 0.435
Aqueous phase 50 mM citrate buffer, pH 3.5 1x PBS, pH 7.4 10 mM Tris buffer, pH 7.2
Organic phase Ethanol Ethanol Acetonitrile
Total no. measurements 81 162 324
No. unique formulations 27 54 108

A Lipid Nanoparticles Liposomes Polymeric Nanoparticles

DODAP : 50.0% DPPC : 60.0% PLGA: 100.0%
Cholesterol: 38.5% Cholesterol: 30.0%
DSPC: 10.0% DSPE-PEG,: 10.0%
DSPE-PEGy: 1.5%
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Figure 2. Selected summary of nanoparticle attributes obtained via microfluidic production. A) Illustrations showing the structure of the different types
of nanoparticles: lipid nanoparticles, liposomes, and PLGA nanoparticles, as well as their molar composition (Created in BioRender. Pesce, C. (2025)
https://BioRender.com/g35k993). B) Scatter plots showing the relationship between total flow rate (TFR) and the average hydrodynamic diameter (d) as
measured by dynamic light scattering. Translucent points are formulations that were classified as polydisperse (i.e., Pdl > 0.250). C) Pearson correlation
plots showing how each formulation production feature (i.e., total reagent concentration, total flow rate, or flow rate ratio) is linearly correlated to the
dy, the Pdl, or curcumin encapsulation efficiency (EE) for lipid nanoparticles, liposomes, or PLGA nanoparticles. Strong positive correlation (i.e., closer
to 1.0) indicates a direct relationship between the feature and the target, while a strong negative correlation (i.e., closer to —1.0) indicates an indirect
relationship.
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to predict payload loading and d,; was restricted solely to the so-
called ‘monodisperse’ particle configurations (i.e., PdI < 0.250).
For models to predict PdI, the entire training data set (including
monodisperse and polydisperse formulations) was included. In
Figure 2B, translucent dots indicate polydisperse samples.

Perhaps more interesting are the Pearson’s correlation plots in
Figure 2C, where a color map indicates the type of correlation be-
tween the input features and the output parameters. In estimat-
ing the Pearson’s coefficient, a linear relationship is assumed to
exist between two groups. When considering LNP, the flow rate
ratio (FRR) has a significant impact on the hydrodynamic diame-
ter dj;, as an increase in FRR leads to a decrease in d; (purple box
Figure 2C, left-inverse correlation). For all the other input fea-
tures, only modest correlations were observed with a Pearson’s
coefficient close to 0 (light green and cyan boxes). Importantly,
these are empty LNP, and results may change in the presence of
an encapsulated biologically active agent (i.e., sSiRNA or mRNA).

For the liposomes, the Pearson’s plot is more complex. The
flow rate ratio has only a modest effect on the output parameters,
which in this case also includes the loading of curcumin in the
lipid bilayer. On the other hand, the total flow rate (TFR) tends
to dominate: an increase in TFR is associated with a reduction
in dy; (purple box Figure 2C, center—inverse correlation) and a
significant increase in PdI (green box Figure 2C, center—direct
correlation), and a modest reduction in EE. Also, the lipid: CURC
ratio significantly affects the output parameters: an increase in
lipid:CURC ratio leads to a decrease in PdI (purple box Figure 2C,
center—inverse correlation) and an increase in EE (green box
Figure 2C, center—direct correlation). The behavior observed for
the PLGA nanoparticles is quite straightforward, as an increase in
PLGA content positively correlates with the size of the nanopar-
ticles d; (green box Figure 2C, right-direct correlation), whereas
an increase in the PLGA:CURC ratio increases the curcumin
encapsulation efficiency (green box Figure 2C, right—direct
correlation).

While these correlation maps give indications as to the re-
lationship between input features and output parameters and
could be extremely helpful in selecting the most effective input
features to optimize the nanoparticle formulations, more quan-
titative results are desired. Thus, we turned toward open-source
libraries in the R language to build machine learning models for
predicting the hydrodynamic particle diameter, PdI, and encap-
sulation efficiency as a function of the four input features.

2.3. Machine Learning Model Selection

Thirteen different, freely available ML algorithms were evalu-
ated to find the most accurate models to independently pre-
dict dy;, PdI, and EE (i.e. unique models were trained to pre-
dict nanoparticle attributes for each class, for 6 unique mod-
els in total). These were the linear regression, bagged decision
trees (bagged trees), bagged multilayer perceptron neural net-
work (bagged MLP), bagged multivariate adaptive regression
splines (bagged MARS), xgboosted decision trees (xgboost), k-
nearest neighbors, least absolute shrinkage and selection opera-
tor (LASSO), ridge regression (RIDGE), Poisson regression, sup-
port vector machines (SVM) with linear, radial, and polynomial
kernel functions, and random forest. For all models, before train-
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ing or validating testing data, input features were pre-processed
by dropping any zero-variance features and max-min scaling (i.e.,
normalizing values between 0 and 1). Moreover, data were re-
shaped so that each reagent for each formulation had its own
column (with the value as the reagent concentration in mM),
and other input features were dynamically calculated, such as
reagent:payload ratio, and payload chemical properties.

Following the workflow depicted in Figure 1B, the 13 ML mod-
els were first trained for predicting particle d,;, PdI, and EE,
and their performance is shown in Figure 3A for the lipid-based
nanoparticles and Figure 3B for the PLGA nanoparticles, pre-
sented in terms of the root-mean-square error (RMSE) and r?
values. The ML models were ranked based on their performance
across the three different output parameters (d,;, PdI, and EE).
Figure 3 reports max-min normalized RMSE values, while the
non-normalized RMSE values and precise r? values for all algo-
rithms are reported in Tables S1 and S2 (Supporting Informa-
tion). The random forest model presented, on average, the lowest
RMSE per predicted output (dark purple boxes). Specifically, for
the lipid-based nanoparticles, the random forest model returned
average RMSE values of 16 + 2 nm for d;, 0.067 + 0.005 for PDI,
and 9.8 + 1.2% for EE, after selecting for optimal hyperparam-
eters with k fold cross validation on training data. These corre-
sponded to r? values of 0.860, 0.749, and 0.929 for d;, PdI, and
EE, respectively. For the PLGA nanoparticles, the random forest
model returned even lower average RMSE (and higher r?) values
corresponding to 11 + 1 nm (0.935) for d;, 0.053 + 0.002 (0.629)
for PDI, and 3.9 + 0.5% (0.987) for EE. Note that the RMSE were
related to an average diameter of 98 and 104 nm for lipid-based
and PLGA nanoparticles, respectively.

A more granular look at the performance of the different ML
models across the considered output parameters shows a wide
variability. Interestingly, of all the output parameters, predicting
EE seems to be the most straightforward, as for all the 13 ML
models considered, a r? value larger than 0.75 is returned (yellow
boxes in the r? plots for both lipid-based and polymeric nanopar-
ticles in Figure 3). Conversely, predicting PdI appears to be the
most difficult task, as for all the 13 considered ML models, a 2
value varies largely between 0 and 1 (Figure 3).

Also, it was generally observed that if a specific ML model per-
formed poorly at predicting Pdl, the application of the same al-
gorithm toward predicting d,; likewise performed poorly. This is
confirmed by Figure 4, where the correlation between percent er-
ror in predicted for PdI and d,; is shown. The likely explanation
of this is that the prediction of d;; depends on so-called monodis-
perse samples. Thus, if an independent model performs poorly in
predicting the particle PdI with widespread variability in the PdI,
then the underlying particles are unreliable in their size distri-
bution. Thus, it follows that the prediction of particle diameter is
similarly unreliable. It must be emphasized that the various mod-
els (i.e., for predicting d;; or PdI) are independently trained on the
underlying data and are not themselves correlated. Thus, this cor-
relation seen in Figure 4 is due to the actual physical nanoparticle
population. One should further note the high variability of the in-
dividual predictions with each model type, which is reflected in
the large standard deviation of the averaged points in Figure 4. It
is understood, though, that a high percent error in the PdI pre-
diction is thus likely an effect of a highly variable size population,
which leads to further errors in predicting the particle size.
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Figure 3. Performance of various machine learning models for predicting nanoparticle target attributes. Models were trained on thirteen different
machine learning algorithms for predicting diameter, polydispersity index (Pdl), and percent encapsulation efficiency (EE) for A) lipid-based nanoparticles
and B) PLGA nanoparticles. Model accuracy was evaluated based on the root-mean-square error (RMSE), as well as the coefficient of determination
(r? value). RMSE values were max-min normalized. Models are sorted by the minimum combined RMSE for predicting diameter, Pdl, and EE for each
particle class. Models were placed in order of the best average (minimum) RMSE for all models, for lipid-based nanoparticles.

The application of machine learning models toward formula-
tion development is rapidly becoming a hot topic in the field of
microfluidic formulation development. Recently, the authors re-
ported the application of the open-source machine learning li-
brary scikit-learn in Python, coupled with an artificial neural net-
work, toward predicting liposome size and dispersity.[?! In this

Adv. Funct. Mater. 2025, e14387 e14387 (6 of 17)

previous work, a series of classification algorithms were simi-
larly screened to determine whether a formulation was predicted
to be “monodisperse” or “polydisperse”, as well as “stable” (i.e.,
remain “monodisperse” over time) or “unstable.” Recently, Eug-
ster etal. !l implemented machine learning toward streamlining
the development of liposomal drug delivery systems and likewise
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Figure 4. Correlation between the percent error for various machine learn-
ing models in predicting Pdl and diameter. Translucent points represent
the percent error (% error) for every measurement, with colors matched
to the model. Solid points represent the average percent error for each
model, with X-Y error bars representing the standard deviation for the per-
cent error for Pdl predictions and diameter predictions, respectively. The
dashed diagonal line represents a perfect correlation between percent PdI
error and percent Diameter error. The red line represents the best fit curve
for the solid points.

screened various regression algorithms for predicting whether li-
posomes would form, the optimal FRR, and resultant liposome
size. A 2022 study by Rebollo et al.??! investigated the effect of
cholesterol concentration, ionic strength of the aqueous phase
(i-e., NaCl concentration), TFR, FRR, and temperature on the pro-
duction of liposomes, and employed artificial neural networks to
predict size and PdI. Finally, Wu et al.’?*] reported the application
of twelve different machine learning algorithms toward predict-
ing the size and dispersity of chitosan nanoparticles produced
by a multi-inlet vortex mixer. Thus, this systematic approach of
screening various algorithms is relatively straightforward to im-
plement programmatically and can assist in rapidly identifying
the best algorithm for a classification or regression task. Ma-
chine learning has also been implemented to predict how com-
binations of drugs could spontaneously self-assemble into stable
nanoparticles./24%]

2.4. Random Forest Model Hyperparameter Optimization

While the hyperparameters for all models screened were some-
what optimized via a 10-point random search, once the random
forest model was selected, we performed a systematic tuning of
model hyperparameters via a 10-point grid search. That is, we
screened every combination over a range of 10 different values
each for each of the models’ hyperparameters (mtry, min n, and
number of trees). Figure S3 (Supporting Information) shows the
RMSE for each model predicting d;;, PdI, and EE for each of these
combinations. It is apparent that the effect of the number of trees
quickly attenuates, and after ca. 250 trees, there is no improve-
ment in model performance. For min n, it appears that a lower
value (e.g., min n = 2) yields the best performing models. Finally,
in all cases, the largest mtry value results in the best-performing
models. In all cases, the best hyperparameters are selected and
locked into the final model.
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2.5. Validation of the Random Forest Models

The most accurate model, the random forest model, was then
evaluated first on the training data and then on the (unseen) test-
ing data. A summary of all results on training and testing data are
presented in Table 2. The random forest algorithm is a tree-based
approach in which an uncorrelated collection of decision trees is
evaluated as an ensemble in order to, for regression models, av-
erage the accuracy of the prediction.[?*?”] The benefit of this ap-
proach is a reduced risk of overfitting at the cost of increased com-
putational load, represented by an increasing number of “trees”
in the forest.[?8]

In order to evaluate the influence of training data size (i.e. per-
cent of total dataset) on model accuracy, percentages of training
data were tested on a range from 50-85% with 10 different ran-
domized splits of the data. Figure 5 shows the mean RMSE and
r? value for the optimized random Forest model in predicting
nanoparticle diameter for both lipid-based and PLGA nanoparti-
cles. Likewise, Figure S4 (Supporting Information) shows the ef-
fect of percent training data on Random Forest model accuracy in
predicting PdI and %EE, while Figure S5 (Supporting Informa-
tion) shows the number of measurements within either the train-
ing or testing data, depending on what percent of the database is
used for training data. It is important to note that RMSE and r?
values remain relatively consistent across all training data per-
centages, which indicates that the model is not over-fitting.

To investigate how the size of the database (i.e. total number
of measurements) affected the performance of the random for-
est models, the entire database was randomly sampled to create
subsets ranging from 50 to 230 measurements. These smaller
subsets were then processed through the MicrofluidicML work-
flow, and the model performance was reported as RMSE and 12
value for both lipid-based (Figure S6, Supporting Information)
and PLGA nanoparticles (Figure S7, Supporting Information).
This process was repeated using 20 random seeds to vary the data
sampling and splitting procedure. By repeatedly sampling with
different random seeds, variability was observed in the model per-
formance depending on which formulations were selected and
how the data were separated into subsets. For certain attributes
(i.e., predicting diameter or PdI for lipid-based nanoparticles, or
PdI for PLGA nanoparticles), increasing the size of the database
directly correlated with improved model performance. For other
attributes (e.g. EE for both lipid-based and PLGA nanoparticles),
there was no significant improvement in model performance af-
ter ~100 measurements. However, it is clear that increasing the
total number of measurements (i.e. size of the database) reduces
the variability introduced by the random sampling (Figure S8,
Supporting Information). This implies that increasing the num-
ber of measurements results in models that are more predictive.
The fact that the RMSE standard deviations do not plateau in-
dicates that the critical number of measurements required for
optimal model performance has not yet been reached.

Figure 6A,B show the correlation between outcomes predicted
by the random forest model and those measured experimentally
for the training data. The performance of the random Forest
model on the training data is summarized in terms of RMSE and
r2. It appears that the models for PLGA nanoparticles perform
better at predicting particle diameter (r? = 0.985) as compared
to the model obtained for the lipid-based particles (r* = 0.950).
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Table 2. Overall summary of random forest model performance. Random forest models’ accuracy for predicting hydrodynamic diameter (dy), Pdl, and
% encapsulation efficiency (EE) as reported by the root-mean-square error (RMSE) and coefficient of determination (r? value) for both training and

testing data.

Lipid-based nanoparticles

PLGA nanoparticles

dy (nm) Pdl EE (%) dy (nm) Pdl EE (%)
RMSE training data 9.8 0.046 12.9 5.4 0.033 3.1
testing data 9.5 0.053 10.6 7.5 0.047 22
r? value training data 0.950 0.903 0.668 0.985 0.849 0.970
testing data 0.922 0.787 0.472 0.964 0.560 0.984

However, this is somewhat intuitive as the PLGA nanoparticles
are comprised of a single material, while the lipid-based parti-
cles are comprised of two different particle architectures (LNP
vs. liposomes) with different lipid compositions, including the
relative lipid ratios, aqueous: organic phase ratios, and total lipid
concentrations.

Testing data were randomly subset from the entire database
and withheld from the model training process. The models con-
structed on the training data were then run on the input features
of the testing data, and Figure 7A,B show the correlation between
the predicted and measured values for d;, PdI, and EE. The mod-
els for predicting d;; performed reasonably well with r? values of
0.926 and 0.964 for lipid-based nanoparticles and PLGA nanopar-
ticles, respectively. Likewise, the RMSE for predicting d; for the
testing data was 9.5 and 7 nm for lipid-based nanoparticles and
PLGA nanoparticles, respectively.
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Figure 5. Effect of training data size (%) on random forest model perfor-
mance in predicting diameter. Model performance is reported as either
the root-mean-squared error (RMSE) or coefficient of determination (r?
value) for A) lipid-based nanoparticles or B) PLGA nanoparticles. Lines
and points represent mean values over 10 different randomized splits in
the data, and shaded regions represent the mean value + 1x standard
deviation.
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That stated, the models for predicting lipid-based nanoparticle
outcomes perform quite well on the training data for predicting
dy; and PdI (r2 = 0.950 on training data), and were least perfor-
mant on predicting the EE for the testing data (r? = 0.472 on test-
ing data, Figure 7). However, it should be noted that only the lipo-
somes are loaded with curcumin, thus skewing the distribution
of empty versus CURC-loaded lipid-based nanoparticles within
the training data set. For a brief comparison, models were trained
using the random forest algorithm on a dataset comprised of
only the liposomes. Following hyperparameter optimization via
10 fold cross-validation and a systematic 10-point grid search,
liposome-only models were more performant when compared
to the combined lipid-based nanoparticle models: RMSE of 9 +
2 nm (r? = 0.871) for predicting d,;, RMSE of 0.061+ 0.008 (r? =
0.824) for predicting PdI, and RMSE of 11.1 + 1 nm (r? = 0.920)
for predicting EE. Thus, it appears, at least initially, that model
generality is traded for accuracy. On the other hand, for the poly-
meric particles, the RMSE for the diameter predictions was under
10 nm, against an average diameter ranging from 34 to 267 nm.

Admittedly, the models for predicting PdIl for both PLGA
and lipid-based nanoparticles performed relatively poorly (r? val-
ues of 0.787 and 0.560 for lipid-based and PLGA nanoparticles,
respectively) for the testing data. Speculatively, this could be
due to the variability of PdI data when particle populations are
polydisperse.[2%3% That is, when particles with polydisperse pop-
ulations (or perhaps multi-modal populations), their measure-
ment via light scattering becomes unreliable; thus, modeling pre-
dictions on these “unreliable” data generate unreliable models. In
fact, it is for this reason that only the monodisperse formulations
are used in training the models for predicting d; and EE. In order
to test this hypothesis, random forest models were trained to pre-
dict PdI on only monodisperse (PdI < 0.250) or polydisperse (PdI
> 0.250) formulations, for both lipid-based and PLGA nanoparti-
cles. Indeed, when trained on only monodisperse formulations,
the capability to predict PdI on testing data was stronger (RMSE
0.019 and RMSE 0.040) compared to when trained on only poly-
disperse formulations (RMSE 0.060 and RMSE 0.057, for lipid-
based and PLGA nanoparticles, respectively).

For the prediction of EE, lipid-based particles were somewhat
worse compared to PLGA nanoparticles (RMSE of 12.9% ver-
sus 3.1% on training data). There are two explanations for this
discrepancy: on one hand, the encapsulation of curcumin was
only evaluated in the liposomes, as lipid nanoparticles are better
suited for the delivery of nucleic acid payloads; on the other hand,
the liposomes are comprised of multiple lipid types, whereas the
PLGA nanoparticles were comprised of a singular material. To
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Figure 6. Optimized random forest model performance on training data. Random forest model accuracy in predicting diameter, Pdl, and %EE for
training data of A) lipid-based nanoparticles (comprised of lipid nanoparticles and liposomes combined), as well as B) PLGA nanoparticles. Solid blue
lines represent best fit linear models between predicted and measured values, with shaded areas representing the standard error for the model. Dashed
gray lines represent perfect correlation between predicted and measured values.

the first point, the loading of CURC into PLGA nanoparticles, a
hydrophobic small molecule adapted for loading into a hydropho-
bic polymer, is ideal (r? value of 0.970 and 0.984 for training
and testing data, respectively). Liposomes are not the ideal vec-
tor for loading a hydrophobic small molecule, and future work
will surely necessitate investigating the loading efficiency of pay-
loads more suitable for lipid-based carriers (i.e., nucleic acids, hy-
drophilic small molecules).

In order to test whether the same workflow could be applied
in a completely “nanoparticle agnostic” fashion, random forest
models for predicting d, PdI, and EE were compiled without
first separating the particles into different subsets (i.e., lipid-
based or PLGA nanoparticles). That s, all formulations were kept
together, and models were built by subsetting the entire nanopar-
ticle database into training and testing data with 10 fold cross-
validation, preprocessing input features, and then optimizing
random forest model hyperparameters.

These models were then utilized to make predictions on either
the training data or testing data (all nanoparticle formulations
combined). Figure S9 and Table S3 (Supporting Information) de-
tail the results of these models, and it is apparent that models
for predicting size and PdI perform relatively well, with RMSE
of 11.1 nm and 0.051, respectively, on testing data. However,
the model for predicting EE becomes non-performant (RMSE of
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73.4% on testing data). This is presumably because of the mate-
rial differences between lipids and PLGA, and the factors govern-
ing loading efficiency.

2.6. Assessing the Relevance of Input Features in the Design of
Nanomedicines

In order to further elucidate the weight of each input feature
in the microfluidic-based fabrication of nanoparticles, a Ker-
nelSHAP method was adopted.?132] Specifically, the SHapley Ad-
ditive exPlanations (SHAP) is a method for computing the con-
tribution of each input feature toward the output parameters by
assessing the Shapley value,[**) which was computed via the ker-
nelshap package in R.34

Figure 8 shows typical “beeswarm” plots where the input fea-
tures are aligned vertically and ranked in order of their SHAP
value. For each individual measurement, corresponding to a
single-colored dot on the plot, the SHAP value is reported by
the data point’s position along the horizontal axis, with positive
SHAP values indicating a significant contribution toward deter-
mining the output parameter, negative SHAP values indicating
an inverse correlation between that input feature and the out-
put parameter, and 0 SHAP values indicating the absence of any
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Figure 7. Models’ performance on testing data. For testing data, which have not been seen by the models, plots show the correlation between predicted
and measured diameter (dy), polydispersity index (Pdl), and encapsulation efficiency (%EE) for A) lipid-based nanoparticles and B) PLGA nanoparticles.
Solid blue lines represent best fit linear models between predicted and measured values, with shaded areas representing the standard error for the model.
Dashed gray lines represent perfect correlation between predicted and measured values.

influence of the input feature and the output parameter. The col-
ors of the dots are associated with the max-min normalized value
for each input feature. For instance, dark purple points on the
TFR line correspond to low total flow rate values, while yellow
points on the same line correspond to high flow rate values.

Some of the features reported, even if shown to strongly influ-
ence a prediction, are less powerful in this study. For example,
in Figure 8 (%EE), the importance of the XlogP3, molecule po-
lar surface area, and molecular weight of the API (Payload MW)
is overstated, as only one API (i.e. CURC) was evaluated. Thus,
in this case, there exist only two states for those features: 0 for
no CURC and 1 for nanoparticles loaded with CURC. However,
with a view toward the future, as more API are tested and added
to the database, these features will become more relevant toward
the predictions.

The plots can be interpreted as in this example, related to
d;, in Figure 8B. The concentration of PLGA (Resomer RG
504H) is strongly predictive of d,, and it can be clearly elu-
cidated by the distinct separation between three feature lev-
els and the distance between the low feature value cluster and
the high feature value cluster. Figure S10 (Supporting Infor-
mation) shows the mean absolute SHAP value computed by
taking the average of the absolute value for all SHAP val-
ues: there is a 6-fold increase in mean absolute SHAP value
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for PLGA concentration compared to the next closest feature,
TER.

Of interest is the comparison between the SHAP analysis and
the Pearson’s correlation coefficient (PCC) in Figure 2C. While
PCC assumes a linear correlation between the input feature and
the output parameters, it is evident that there is overlap with the
SHAP importance represented in Figure 8 and Figure S10 (Sup-
porting Information). It is important to note that the SHAP val-
ues in Figure 8A reflect the feature importance for the mix of LNP
and liposomes, whereas the PCC is individualized for LNP and
liposomes. Moreover, the SHAP values consider the individual
concentration of each constituent reagent and can therefore give
a more detailed estimation for each input feature’s effect on the
predicted outcome. Thus, for the lipid-based nanoparticles, it ap-
pears that the cholesterol concentration is a main driver for d;,
followed by FRR and TFR, and the other input features. Mean-
while, TFR and FRR appear to drive lipid-based nanoparticle PdI,
and the [total lipid]:[CURC] ratio drives EE.

For PLGA nanoparticles, PLGA concentration is the most im-
portant feature for determining d,;, which corresponds precisely
with the PCC. Similarly, PLGA concentration is strongly deter-
minant of PLGA nanoparticle PdI, which likewise corresponds
with the PCC. Finally, flow parameters have little effect on CURC
entrapment in the PLGA nanoparticles, and the main feature
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Figure 8. Evaluating feature importance for the random forest model. Feature importance was elaborated using the KernelSHAP method to deconstruct
the contribution of each feature toward predicting hydrodynamic diameter (dy), polydispersity index (Pdl), and encapsulation efficiency (EE). Beeswarm
plots for A) lipid-based nanoparticles and B) PLGA nanoparticles show the relative importance of each input feature ranked from most to least important
along the y-axis. Each point on the plot is an individual measurement, and colors indicate the max-min normalized value of that input feature. Positive
SHAP values indicate a strong influence of that feature on the predicted outcome, while negative SHAP values indicate an inverse relationship. Points
(measurements) are jittered along the y-axis to illustrate the density of measurements around the SHAP value for each feature.

determining EE is the [PLGA]:[CURC] ratio, which fits nicely with
the PCC. Thus, while these relationships may not be precisely lin-
ear, the kernel SHAP method provides an alternative perspective
with regard to feature importance and is another valuable tool to
understand how production parameters are related to the prop-
erties of the resultant nanoparticles.

Returning to the so-called “total models” where nanoparti-
cles were not subset by class (e.g., lipid-based nanoparticles and
PLGA nanoparticles) but rather all formulations in the database
were retained for training and splitting (Figure S9 and Table S3,
Supporting Information), the SHAP analysis provides insight
into why the model for predicting EE failed (Figure 8). For both
lipid-based nanoparticles and PLGA nanoparticles, the reagent:
payload ratio is a major determinant for predicting EE. However,
detailed examination of the SHAP values and the clustering of
normalized feature values for both nanoparticle classes shows
differences: for lipid-based particles, lower reagent: payload ra-
tios have negative SHAP values, while higher reagent: payload
ratios have positive SHAP values. For PLGA nanoparticles, all lev-
els of reagent: payload ratios have positive SHAP values. There
are other differences, such as TFR having a stronger effect on
EE for lipid-based nanoparticles while not having a significant ef-
fect for PLGA nanoparticles. Thus, it is likely that with such dra-
matic differences in material characteristics and factors affecting
loading, models for predicting EE could not perform. However,
it remains to be seen whether building a database orders of mag-
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nitude larger, with more diverse combinations, could overcome
this limitation.

2.7. Validation of Data on Unseen Formulations from Literature

To test how “general” the models were in predicting formula-
tions never seen by the model, a sample of formulations was
taken from the literature, and model accuracy was tested on
these never-before-seen formulations from completely indepen-
dent studies.!'>*~4% To maintain consistency in the microfluidic
system employed to generate particles, we only tested data from
articles where a Precision Nanosystems Benchtop NanoAssem-
blr with the same microfluidic chip was used. One of the limita-
tions of the MicrofluidicML approach is that it is limited by the
amount of data—it was only possible to produce so many formu-
lations, using different materials, microfluidic parameters, and
combinations thereof. Thus, articles in the literature did not have
the exact same materials, but since the MicrofluidicML models
do not yet factor in materials properties (molecular weight, log P
values) or solvent properties (viscosity, volatility, miscibility with
water), data were converted to material classes (rather than pre-
cise materials). For example, rather than testing specific PLGA
(e.g., Resomer RG 504 H, Resomer RG 502 H, PURAC 5004A,
etc.), all these polymers were classed simply as PLGA. Likewise,
instead of testing for specific lipids, lipids were classed as either
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“structural/helper” (e.g., DSPC, DPPC, or DOPE) or ionizable
(e.g., DODAP, DLin-MC3-DMA, SM-102, etc.) lipids, and thus
lipid concentrations were reported by their lipid type (i.e., helper
lipid, ionizable lipid, PEG-lipid, sterol lipid).

Figure S11 (Supporting Information) shows the capability of
models to predict LNP (Figure S11A, Supporting Information) or
PLGA (Figure S11B, Supporting Information) nanoparticle size
or PdI with formulations pulled from literature. It is apparent
that the lipid-based model underperforms, and this is due to the
wide variability of materials used in those formulations reported
in the literature. Lipid-based nanoparticles are comprised of dif-
ferent types of lipids (e.g., helper/structural lipids, sterol lipids,
PEG-lipids, or ionizable lipids) in different molar ratios, total
lipid concentrations, etc. In order to improve the models’ gen-
eral performance, high-throughput formulation screening will be
necessary in the future to produce and characterize a wider vari-
ety of lipid compositions.

Figure S11B (Supporting Information) shows how well the
models for PLGA nanoparticles predict size and PdI, and while
there are differences in polymer brand, what is interesting is that
the formulations that were most accurately predicted fell within
the range of the production parameters tested in the original
MicrofluidicML database. The best performing predictions were
made on a PLGA nanoparticle comprised of LACTEL B6010-2,
which was compositionally similar to the Resomer RG 504 H
used in the present study (lactide:glycolide ratio of 50:50, molec-
ular weight range of 30-60 kDa), the organic phase was acetoni-
trile, the total PLGA concentration was 0.222 mw, and the mi-
crofluidic parameters were TFR of 5, 10, 15 mL min~! and FRR
of 1, 3, 5.1 What is telling is that, even within the same pub-
lished work, PLGA nanoparticles with different lactide: glycolide
ratios (e.g., 75:25 or 85:15 instead of 50:50) are not well predicted
by the MicroflulidicML models. These results emphasize the lim-
itations of this approach—significantly more data are needed to ac-
count for variability in materials, and future iterations will need
to account for more input features such as material properties
(molecular weight, hydrophobicity, solubility, chemical compo-
sition), solvent properties (viscosity, volatility, water miscibility),
etc. However, when compared with literature values, models are
effective at interpolating nanoparticle attributes but are less effec-
tive when trying to extrapolate or match imprecise input features.

2.8. Machine Learning Models Compared to Generative Artificial
Intelligence

The ultimate test would be the deployment of the optimal mod-
els toward providing the production parameters that would yield
particles of a specified class with a desired diameter and under-
neath a defined PdI limit. The biggest competitor to the work-
flow proposed here, and so-called “conventional” machine learn-
ing in general, is the rise of generative large language models
(LLM). Such models are based on the input of incomprehensible
amounts of data, able to synthesize logical-sounding solutions to
very general questions. Comparatively, the algorithm-based ma-
chine learning models proposed here are less flexible. In order
to compare how such platforms may perform given a similar
task, we prompted two such Al engines, OpenAl’s ChatGPT!*!]
with the GPT-3.5 model and Google’s Bard (now Gemini)[** with
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the Bard/LaMDA-based model, to provide the optimal input fea-
tures to produce either lipid nanoparticles or PLGA nanoparticles
with a size of 100 nm. Full transcripts of those conversations,
along with Tables S4 and S5 (Supporting Information) detailing
the specifics of those formulations, can be found in the Support-
ing Information. Considering the rapid evolution of the Al field,
these platforms were re-prompted at a later date to provide up-
dated solutions, and another platform, DeepSeek!*}] was included
in the study.

This exercise in evaluating generative Al platforms versus the
machine learning models developed in-house provided quite in-
teresting results. Initially, both generative Al platforms were hes-
itant to provide a precise formulation. Rather, both tended to out-
line the important factors that dictate particle size with regard to
the microfluidic production of particles. However, when pressed,
both provided exact formulations. Further inputs were necessary
to specify different, compatible solvents (i.e., using ethanol in
the organic phase for lipid nanoparticles rather than chloroform).
ChatGPT was equally cagey when asked what molecular weight
PLGA should be used, but when pressed, it provided exact values
for molecular weight, total flow rate, and the other parameters.

What was interesting about the Gemini platform is that it pro-
vided references to support its recommendations for the param-
eters it provided. However, the first reference was from Dasa
etal.,[* which does indeed refer to the formulation of liposomes.
However, these liposomes were produced not with microfluidics,
but via lipid film hydration and syringe extrusion. Moreover,
the four references provided further in the conversation were
completely fabricated, and we were unable to find any record of
them in the archives of Pharmaceutics, the International Journal
of Pharmaceutics, the Journal of Microfluidics and Nanofluidics, or
the Journal of Nanoparticle Research (all real journals). While the
Bard/Gemini platform did fabricate these references, it was in-
teresting to note that it performed very well with regard to pro-
viding formulations that yielded both lipid-based nanoparticles
and PLGA nanoparticles of 100 nm.

Meanwhile, MicrofluidicML was similarly employed to gener-
ate optimal formulations to yield lipid-based or PLGA nanoparti-
cles with a mean d;; of 100 nm and PdI < 0.250. MicrofluidicML
is unable to generate dynamic responses in the same way as the
generative LLM. Rather, a large array of formulations is synthet-
ically screened—A matrix of production parameters was system-
atically generated, and then the random forest models were run
against these input parameters. The optimal formulation, which
matched the required nanoparticle attributes, was selected and
tested. Thus, the MicrofluidicML approach in its current itera-
tion relies to a degree on the user’s expertise in the matter of
microfluidic nanoparticle production.

Figure 9 shows the sizes and PdI after following the recom-
mended formulation from all four platforms, both with the old
prompts (e.g., GPT-3.5 and Bard) and the new prompts (GPT-
40, Gemini Flash 2.0, and DeepSeek-V3). For the “old” models,
Bard/Gemini was very close to the 100 nm target, with a d
of 93 + 7 nm (PdI = 0.119) and 98 + 1 nm (PDI = 0.211) for
lipid-based and PLGA nanoparticles, respectively. Likewise, Mi-
crofluidicML provided formulations that yielded 90 + 5 nm in
diameter (PDI = 0.061) and 97 + 7 nm (PDI = 0.218) for lipid-
based nanoparticles and PLGA nanoparticles, respectively. Chat-
GPT with GPT-3.5 was a bit farther off-target with the lipid-based
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Figure 9. Comparing MicrofluidicML against generative artificial intelligence engines. Comparison between the results of formulations recommended
by ChatGPT (OpenAl), Bard/Gemini (Google), and MicrofluidicML for producing lipid-based or PLGA nanoparticles. All platforms were prompted to
provide parameters to produce 100 nm nanoparticles (dashed horizontal line), and bars show the mean diameter of particles generated following these
conditions. Points show the mean Pdl measured, and error bars show 1 standard deviation for either diameter or Pdl. After some time, ChatGPT and
Gemini were re-prompted (with their new Al models), and DeepSeek was added as a generative Al model platform, and these new formulations were

attempted.

nanoparticle formulation, yielding particles with a diameter of
160 + 13 nm (PDI = 0.150). However, the output of the Chat-
GPT formulation for PLGA nanoparticles was a cloudy-white so-
lution with large, flocculated bodies with a high polydispersity
(PdI = 0.920). However, one could anticipate this result because
the ChatGPT platform recommended an aqueous: organic FRR
of 1:3,i.e., a substantially higher volume of organic solvent. Thus,
one could reasonably predict that nanoparticles would not form
due to the significant presence of the organic solvent.

With the rapid development of LLM, we re-prompted the mod-
els (using a new, unassociated account) on updated Al engines,
and there were significant changes in their responses. Both Chat-
GPT (GPT-40) and Gemini (Flash 2.0) were much more direct
in providing a solution. GPT-40 included citations as references,
and these papers were real and on topic. Initially, GPT-40 pro-
vided microfluidic parameters not compatible with our platform
(a total flow rate of 0.4 mL min~?) for the production of lipid-
based nanoparticles. Interestingly, it provided a formulation with
an unconventional combination of lipids: DOPE, cholesterol, and
DOTAP at molar ratios of 50:45:5. After prompting to provide a
higher flow rate, GPT-40 provided a formulation much more in
line with what was provided by Flash 2.0 and DeepSeek-V3, which
were in line with conventional formulations of lipid nanoparti-
cles (i.e. Dlin-MC3-DMA, DSPC, Cholesterol, and DMG-PEG,,
at percent molar ratios of 50: 10: 38.5: 1.5).

Formulations recommended by DeepSeek V3 yielded 78 nm
(PdI = 0.139) and 90 nm (PdI = 0.224) LNP and PLGA nanopar-
ticles, respectively. Google’s new LLM engine, Gemini Flash 2.0,
yielded 85 nm (PdI = 0.123) LNP and 114 nm (PdI = 0.105) PLGA
nanoparticles. OpenAl’'s GPT-4o provided formulations that re-
turned LNP of 75 nm (PdI = 0.121) and PLGA nanoparticles
of 146 nm (PdI = 0.179). Interestingly, this PLGA nanoparticle
formulation recommended by GPT-40 was the least “accurate,”
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however was a big improvement over the earlier generation.
Notably, the older LLM versions (GPT-3.5 and Bard) provided
more “unique” solutions for lipid-based nanoparticle formula-
tions, while all LNP formulations recommended by the newer
LLM generations (GPT-40, Gemini Flash 2.0, and DeepSeek)
were quite similar in composition and diameter (%79 + 5 nm).
Thus, it appears the types of recommendations and inputs gen-
erated by the LLM were converging for LNP. On the other hand,
MicrofluidicML is able to generate innovative formulations be-
cause it is more simplistic than an LLM and is constrained by
the input data. This can be seen as the MicrofluidicML approach
generated an unconventional LNP formulation.

While generative LLM are more “creative” and flexible with
regards to proposing formulations, there remains the issue of
LLM hallucination.*#¢] Furthermore, with the updated LLM en-
gines, all formulations converged to a similar formulation. This
is likely due to the fact that this formulation is statistically gen-
erated based on those formulations most frequently reported in
the literature. The MicrofluidicML approach, employing super-
vised machine learning algorithms to train predictive models, is
constrained by the underlying data. Thus, it can only make pre-
dictions based on the (quality) data underpinning the platform.
By enriching that data, adding more formulations and variables,
it may be possible to sustainably grow the platform into a signifi-
cant tool for formulation development. The generative LLM also
requires a significant amount of data to train, and the scraping of
this data from the web comes with risks, such as from AI models
trained on Al-generated datal*’! and potential ethical/copyright
issues.[*®! By contrast, the MicrofluidicML approach guarantees
that there are no ethical concerns, as all data is generated and
owned by the user, and the computational workload is minimal—-
i.e., able to run on a personal computer. In fact, screening the
different machine learning algorithms requires < 10 seconds to
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compile per model (Figure S12, Supporting Information), with
relatively low memory usage (Figure S13, Supporting Informa-
tion). Compilation of the random forest model, including system-
atic hyperparameter optimization, is accomplished in <5 min
per model (Table S6, Supporting Information) with relatively low
peak memory usage (Table S7, Supporting Information). Notably,
these values are dependent on the hardware employed to compile
the models.

3. Conclusion

Al is at the cutting-edge of research, and powerful Al-driven en-
gines are frequently being applied to new problems. In the past,
the utilization of machine learning and the associated complex
computational tasks either required significant computing power
or in-depth knowledge of statistics and mathematics. While not
intending to undermine the importance of learning and under-
standing the fundamental underpinnings of these methods, ma-
chine learning frameworks and libraries are being developed
in accessible programming languages, such as Python and R,
that can be implemented on personal computers (i.e., not re-
quire powerful GPU or computer clusters), which can enable re-
searchers in non-machine learning research fields to apply these
algorithms to niche or specialized use-cases.

We reported the application of open-source machine learning
libraries to develop MicrofluidicML, a workflow aimed at guiding
the development of nanomedicines produced via microfluidics.
This builds on a database comprised of three different nanopar-
ticle types (liposomes, lipid nanoparticles, and PLGA nanoparti-
cles) to develop relatively agnostic machine learning models that
can predict d,;, PdI, and payload EE based on the microfluidic in-
put features (i.e., total flow rate, flow rate ratio, individual reagent
concentrations, and payload chemical properties). The selection
of a random forest model was based on the screening of numer-
ous machine learning algorithms. The final random forest model
hyperparameters were optimized via a 10-point grid search with
k-fold cross-validation. MicrofluidicML is able to accurately pre-
dict nanoparticle target attributes and provide (albeit general) for-
mulation parameters to achieve particles of a specific class (i.e.,
lipid-based or PLGA nanoparticles) with specific properties (i.e.,
d;;, PdI, and EE). The model, evaluated on the unseen testing
data, was quite accurate in predicting d;; and EE, however strug-
gled to make predictions on PdI. However, this approach is flexi-
ble and scalable—the input of new data would mean a new model
could easily and dynamically be built and re-optimized.

This work represents a foundational stone upon which a larger,
comprehensive workflow is envisioned. Through the implemen-
tation of automated nanoparticle production and characteriza-
tion methods, one can imagine a highly automated and data-rich
workflow in which machine learning models are continually im-
proved upon. With sustained activity, the underlying database
can be greatly expanded upon, and these models can grow and
adapt to incorporate even more input features (i.e., solvent type
and properties), new particle types (i.e., hybrid polymer-lipid
nanoparticles), and an increasing diversity in formulations (i.e.,
new API or particle/API combinations).

While this is a somewhat niche field (i.e., the application of Al
and machine learning toward nanomedicine formulation devel-
opment), we believe that further development can be of great util-

Adv. Funct. Mater. 2025, e14387 e14387 (14 of 17)

www.afm-journal.de

ity toward the community working in the biomedical application
of nanoparticles and can eventually streamline the future devel-
opment of nanoparticle-based therapeutic platforms. This initial
database serves as a proof-of-concept, but with continued input,
these models have the potential to grow as an increasingly more
general and more powerful machine learning-driven resource in
the nanomedicine field.

4. Experimental Section

Materials:  1,2-distearoyl-sn-glycero-3-phosphocholine (DSPCQ),
1,2-dipalmitoyl-sn-glycero-3-phosphocholine  (DPPC),  methoxy- or
carboxyl-terminated  1,2-distearoyl-sn-glycero-3-phosphoethanolamine-
N-(polyethylene  glycol),, ~ (DSPE-PEG,), and  1,2-dioleoyl-3-
dimethylammonium-propane (DODAP) were purchased from Avanti
Polar Lipids. Cholesterol and poly(lactide-co-glycolide) (Resomer RG 504
H, 50:50 lactide: glycolide, MW = 38-54 kDa) were purchased from Merck.

Microfluidic-Based ~ Nanoparticle ~ Fabrication: Nanoparticles were
fabricated using a Precision NanoSystems Benchtop NanoAssemblr
instrument. The system was equipped with a microfluidic micro-
mixer cartridge characterized by a “Y"-like channel with staggered
herringbone geometric features in the channel to facilitate fluid
mixing.

Lipid nanoparticles were produced by preparing mixtures of different
lipids (DODAP: DSPC: Cholesterol: DSPE-PEG,,-OMe) at the molar ratio
of 50:10:38.5:1.5 in ethanol. Three different total lipid concentrations were
considered: 20, 40, and 60 mm. These were mixed with citrate buffer (50
mN, pH 3.6) at varying aqueous: organic flow rate ratios (FRR: 1:1, 3:1, and
5:1) and total flow rates (TFR: 2, 4, and 8 mL min~"). The output LNP was
dialyzed against 1x PBS (pH 7.4) overnight to remove traces of ethanol
and restore a neutral pH.

Liposomes were prepared by dissolving DPPC, cholesterol, and DSPE-
PEG,-COOH at molar ratios of 60:30:10 in ethanol. Three different total
lipid concentrations were considered: 12, 24, 48 mm. For curcumin-loaded
liposomes, curcumin was dissolved in ethanol with the lipids at varying
[CURC]:[total lipid] ratios. This organic phase was mixed with 1x PBS (pH
7.4) at varying aqueous: organic flow rate ratios (FRR: 3:1, 6:1, 9:1) and
varying total flow rates (TFR: 1,4, 8 mL min~"). Output liposomes were di-
alyzed against 1x PBS (pH 7.4) at 4 °C overnight to remove excess ethanol
(and free CURC).

PLGA nanoparticles were made by dissolving PLGA in acetonitrile at
varying concentrations (5, 10, and 20 mg mL™", or 109, 217, and 438 um,
respectively). PLGA nanoparticles were self-assembled via microfluidic
micro-mixing by systematically varying the flow rate ratio between the
aqueous (Tris HCl buffer, pH 7.2, 10 mm) and organic (acetonitrile) phases
at FRR = 3:1, 4:7, and 5:1. The total flow rate (TFR) was also systemati-
cally varied at 4, 6, and 13 mL min~'. For CURC-loaded PLGA nanoparti-
cles, CURC was dissolved in acetonitrile at various [PLGAJ:[CURC] ratios.
PLGA nanoparticles were synthesized in the NanoAssemblr Benchtop sys-
tem, and the final particles were collected and washed via centrifugation
at 18,213 rcf (12,700 rpm) for 30 min at 4 °C.

Nanoparticle Physico-Chemical Characterization: Particle djy and Pdl
were characterized via dynamic light scattering (DLS) on a Malvern Ze-
tasizer Nano S platform. Lipid-based nanoparticles were diluted 1:100 in
distilled water before measurement. PLGA nanoparticles were evaluated
directly after microfluidic production.

To evaluate the EE of CURC, PLGA nanoparticles were collected via
centrifugation (18,213 rcf for 30 min at 4 °C). The supernatant was col-
lected and analyzed by UV-vis on a Tecan Sark spectrophotometer at A5p,
=425 nm. The CURC concentration in the supernatant was determined via
a calibration curve in the range of 0-15.625 ug mL~". EE was determined
through Equation 1 as

G -C
%EE = ——-100 m
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where C; is the initial CURC concentration used in the synthesis (i.e.: the
concentration in the organic phase pre-microfluidic mixing) and C; is the
CURC concentration detected in the supernatant following production and
centrifugation.

The Pearson’s coefficient (Equation 2) was used to assess possible cor-
relation between input features and target attributes:

Z?:] (; =x) (yi =)

\/27’:1 (x; _)_()2 : \/Z,n=1 (y;

where x; and y; are the individual values for every observation, and x and y
are the average values for each variable.

Machine Learning to Predict Nanoparticle Properties: ML models were
built in the R language (Version 4.3.3 “Angel Food cake”)[*’! using the
tidymodels package,[%] an R package geared toward streamlining the pro-
cess of training ML models by enabling data splitting, data pre-processing,
and model tuning. Specifically, the resulting machine learning workflow,
dubbed MicrofluidicML, employs various ML models within the tidymod-
els and parsnipl>1l workflow to train models.

In the particle fabrication process, multiple independent parameters
(input features) were considered including composition, such as the type
of reagents (lipid, polymer), the reagent concentrations, the ratio between
the concentration of the active pharmaceutical ingredient (API) and the
reagents, as well as flow parameters, such as the total flow rate (TFR) and
flow rate ratio (FRR). Likewise, APl properties such as molecular weight,
theoretical logP value (XlogP3),[2] and the estimated topological polar
surface area (in A%) were implemented as input features.[>3! Prior to build-
ing the models, the database, including all the experimental values of the
input features, was subset into the relevant data. Specifically, nanoparticles
were subdivided into the ‘lipid-based nanoparticle’ category, comprising
lipid nanoparticles and liposomes, and the ‘polymeric nanoparticle’ cate-
gory (i.e., PLGA nanoparticles). Moreover, data were randomly split into
training data (85% of the subset data) and testing data (15% of the subset
data). Three output parameters were considered, namely d, Pdl, and EE
of the nanoparticles.

Thirteen different ML algorithms were considered to build models for
predicting the three target attributes, including i. linear regression (lin-
ear_reg with the ‘Im’ engine), ii. bagged decision trees (bag_tree via the
‘rpart’ engine),>#l iii. bagged multilayer perceptron (bagged MLP) neu-
ral networks (bag_mlp),[26] ji. bagged multivariate adaptive regression
splines (MARS, bag_mars),[¢] v. boosted decision trees (boost_tree with
the ‘xgboost’ engine),[> vi. k-nearest neighbors (nearest_neighbor),[°35°]
vii. least absolute shrinkage and selection operator (LASSO) regression
(linear_reg via the ‘glmnet’ engine with a Lasso penalty proportion of
1),160-621 yjii. Poisson regression (poisson_reg with the ‘glm’ engine),[63]
ix. RIDGE regression (linear_reg via the ‘glmnet’ engine with a Lasso
penalty proportion of 0), x.—xii. support-vector machines with linear, poly-
nomial, and radial kernel functions (svm_linear, svm_poly, and svm_rbf,
respectively, with the ‘kernlab’ engine),l%¢3] and xiii. random forest
(rand_forest with the ‘randomForest’ engine)[®¢] regression algorithms.

During the training phase, the different models’ hyperparameters,
which were used to tune the actual learning process, were optimized via
a 10-point random search. Each model’s hyperparameters were tuned by
testing a range of hyperparameter values between a maximum and mini-
mum ascribed by the ML engine. Prior to training, any zero-variance input
features were dropped, and all input features were normalized (range 0 to
1) to eliminate potential bias. The performance of the model in predict-
ing the target while testing the different hyperparameter values was eval-
uated via k-fold cross-validation (in the present work k = 10). The original
training dataset is divided into k data subsets; the ML model is trained
on the data contained in the combined k-1 subsets and eventually vali-
dated on the remaining data subset. This approach is repeated for each
fold, and model performance is averaged to compute the accuracy of the
method and its hyperparameter selection.[®”] Each of the k subsets com-
prises training data where the mean and standard deviation for the target
attribute (dyy, Pdl, or EE) were roughly equal.

pPCC = (2
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Two metrics were employed to report the models’ performance: the
root-mean-square error (RMSE) and the coefficient of determination
(r* value), as computed by Equations 3 and 4, respectively:

®)

Z:':] (vi — )7/)2
SStotal XL -9’

where n is the sample size (number of measurements), y; is the measured
value of observation i, §; is the predicted value of observation i, y is the
sample mean for all observations, while SS,,,; and SS, 4, are the sum
of squared prediction errors and sum of squared residuals, respectively.
For selecting the optimal hyperparameters, the minimum RMSE was used
as the determining metric.

For the models to predict the particle dy; or EE, only particle configura-
tions associated with a Pdl < 0.250 were included, as these were consid-
ered suitably “monodisperse.” To evaluate model performance across dif-
ferent ML algorithms, the RMSE value was max-min normalized as shown
in Equation 5:

I’Z _ Sstatal - Ssresidual —1—

4

RMSE;; — RMSE, ;.
W min,j
RMSEnormalized = RMSE — RMSE

max,j min,j

®)

where RMSE;; represents the RMSE for algorithm i for predicting the tar-
get attribute j (i.e.: dy, Pdl or EE), RMSE,,;, ; is the minimum RMSE of all
algorithms for predicting the target attribute j, and RMSE,,,q, ; is the maxi-
mum RMSE of all algorithms for predicting the target attribute j.

Model performance was also evaluated in the context of the percent
error (% Error), as calculated in Equation 6:
%Error = ‘u' - 100 (6)

Yi

After selecting the optimal algorithm/model, hyperparameters were fur-
ther optimized by a systematic 10-point grid search. Here, the entirety of
the training data was pre-screened to select the range of hyperparameter
values for the random forest model-that is, the mtry value (the number
of randomly selected predictors), the number of trees in the “random for-
est,” and the minimum n value (the minimum node size). Then, between
the minimum and maximum hyperparameter values, 10 points were se-
lected for each hyperparameter. A matrix of values is created with every
possible combination of each hyperparameter (i.e. 1000 combinations),
and models were trained on the training data via k-fold cross-validation.
From these cross-validated results, the best-performing model for each
attribute was selected.

To test whether the model was sufficiently general based on the dataset
size, a script was written that employed the above hyperparameter opti-
mization step across various sizes of training data (i.e. 50-85% training
data). A loop was written where 10x seeds were randomly generated, and
these were used as points to randomly split the database into training
data and testing data. For each of the ten random seeds, the data were
split between 50-85% training data, and the random forest model hyper-
parameters were optimized, and the model performance was evaluated on
the testing data.

Elaborating on Feature Importance from the Machine Learning Model:
The relative contribution of each input feature to the output param-
eters was ranked via SHAP values using the kernelshap and shapviz
packages.[34%8] kernelshap provides a “model agnostic” implementation
of the KernelSHAP method that can be integrated into a tidymodels work-
flow, through which it is possible to obtain SHAP values from the models.
A “kernelshap” object is generated based on the best model (i.e., opti-
mal hyperparameter conditions), and computed with the entire relevant
database (i.e., subsets of all lipid-based nanoparticle or PLGA nanoparti-
cle measurements). This can then be piped into a “shapviz” object, which,
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through the shapviz package, enables visualization of the SHAP values for
each model.

Validating the Model on Formulation Data from the Literature: To test
how general the models were in predicting formulation parameters, data
were taken from recent literature in which nanoparticles were formulated
on a Precision Nanosystems Benchtop NanoAssemblr. Precise data from
freely available databases (e.g., when provided in Supporting Informa-
tion) were used when possible; otherwise, experimental values (gener-
ally mean values) were extracted from figures. Briefly, figures were im-
ported into GNU Image Manipulation Program (GIMP), and pixel lo-
cations for graphical axes markers (i.e., y-values) were mapped to re-
ported y-axis values. From these data (i.e., y-axis pixel location vs. y-
axis marker value), a linear correlation was created, and mean nanopar-
ticle attributes (e.g., size, Pdl, etc.) were extrapolated from the graphical
information.

Data were re-shaped to fit the same format as the MicrofluidicML
database, and models were run on input features in order to make predic-
tions on available nanoparticle attributes. Because there was rarely a one-
to-one match in materials, reagents were defined by material “type” rather
than precisely matched in order to be processed by the model. For exam-
ple, rather than generating columns for each unique type of PLGA (e.g.,
LACTEL B6010-2, Resomer RG 502 H, PURAC 5004A, etc.), all polymers
were classed together as simply PLGA. This was done because currently
material properties (e.g., molecular weight, log P value, etc) were not fea-
tures in the MicrofluidicML model. Likewise, solvent properties were not
considered. Predictions on nanoparticle size and Pdl were then made us-
ing the random forest models.

Comparison Against Generative Large Language Models: In order to
identify the “optimal microfluidic formulation” via the MicrofluidicML
models, a large matrix of input features (e.g. TFR, FRR, reagent concen-
trations) was generated based on the related data subset. Each feature
was dynamically selected—for example, if making a prediction with “lipid-
based nanoparticles” as the nanoparticle class, the program will generate
a column for every reagent used to produce lipid-based nanoparticles and
generate a range of n = 3 values evenly spaced between the maximum
and minimum concentrations for each reagent. This is likewise done for
TFR, FRR, and (if applicable) the ratio of total reagent concentration to
API concentration. Then, the platform will programmatically generate ev-
ery potential combination of all of these features, dynamically. The model
for predicting Pdl is then run against these formulation parameters, and
only those formulations with a predicted Pdl below the input threshold
(0.250) were kept. The input features from these remaining formulations
were then entered into the models for predicting d; and EE. These results
were sorted in order of the offset error from the desired diameter, and the
top formulation is output.

For soliciting optimal formulations from large language models, dif-
ferent generative Al platforms (OpenAl’s ChatGPT, Google’s Gemini, and
DeepSeek) were prompted to provide formulation parameters to produce
lipid-based or PLGA nanoparticles with a size of 100 nm, as detailed in the
Supporting Information. Improvements in Al engine performance were
evaluated by again prompting these platforms with updated Al engines.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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